Study of a Nonlinear System of Partial Differential Equations Associated with Stratified Fluids in Three Dimensions
Keywords:
Stratified fluids, Non-viscous fluids, Nonlinear advection term, System of partial, differential equations, Sobolev spaces, Galerkin methodAbstract
In this paper, we will show some mathematical properties for a nonlinear system of partial differential equations, which describe the dynamics of internal motions of an exponentially stratified fluid in three-dimensional space. Basically, we will study the existence and uniqueness of the weak solution for our system of partial differential equations involving the nonlinear advection term on a finite interval.
References
R. A. Adams, J. J. Fournier, Sobolev Spaces. Elsevier (2003).
H. Afshari, E. Karapinar, A solution of the fractional differential equations in the setting of b-metric space. Carpathian Math. Publ. 13 (2021), no. 3, 764-774.
H. Afshari, E. Karapinar, A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces. Adv. Difference Equ. (2020), 616.
L. Brekhovskikh, M. Goncharov, Mechanics of continua and wave dynamics. Springer Science and Business Media. 1 (2012).
E. Alvarez, H. Cabrales, T. Castro, Optimal control theory for a system of partial differential equations associated with stratified fluids. Mathematics. 9 (2021), no. 21, 2672.
Benkerrouche, A.; Souid, M.S.; Karapinar, E.; Hakem, A. On the boundary value problems of Hadamard fractional differential equations of variable order. Math. Meth. Appl. Sci. (2022).
J. B. Conway, A course in functional analysis. Springer. 96 (2019).
L. Debnath, P. Mikusinski, Introduction to Hilbert spaces with applications. Academic Press (2005).
G. V. Demidenko, S. V. Upsenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative. CRC Press. 256 (2003).
L. C. Evans, Partial differential equations, American Mathematical Society. Providence, RI. 19 (2022).
A. Giniatoulline, An introduction to spectral theory. RT Edwards, Inc. (2005).
A. Giniatoulline, T. Castro, On the Existence and Uniqueness of Solutions for Nonlinear System Modeling Three-Dimensional Viscous Stratified Flows. J. Appl. Math. Phys. 2 (2014) 528-539.
E. Kreyszig, Introductory functional analysis with applications. John Wiley and Sons. 17 (1991).
H. Le Dret, ´Equations aux d´eriv´ees partielles elliptiques non lin´aires, Springer. 136 (2013).
V. N. Maslennikova, Explicit representations and a priori estimates for the solutions of boundary problems for Sobolev systems. Siberian Mathematical Journal. 9 (1968), no. 5, 883-897.
V. N. Maslennikova, Lp estimates, and the asymptotics as t → ∞ of the solution of the Cauchy problem for a Sobolev system. Trudy Matematicheskogo Instituta imeni VA Steklova. 103 (1968) 117-141.
V. N. Maslennikova, M. E. Bogovskii, Sobolev systems in the case of two space variables. Siberian Mathematical Journal. 18 (1978), no. 5, 770-787.
V. N. Maslennikova, M. E. Bogovskii, Approximation of solenoidal and potential vector fields in Sobolev spaces and problems of mathematical physics. Partial Differential Equations [in Russian], Nauka, Novosibirsk. (1986) 129-137.
V. N. Maslennikova, P. P. Kumar, Stabilization and limiting amplitude of the solution of the Cauchy problem for nonho-mogeneous Sobolev systems. Siberian Mathematical Journal. 27 (1986), no. 3, 424-433.
V. N. Maslennikova, A. Giniatullin, Spectral properties of operators for the systems of hydrodynamics of a rotating liquid and nonuniqueness of the limit amplitude. Siberian Mathematical Journal. 29 (1988), no. 5, 812-824.
A. Salim, S. Abbas, M. Benchohra, E. Karapinar, Global stability results for Volterra-Hadamard random partial fractional integral equations. Rend. Circ. Mat. Palermo (2022), 2, 113.
S. L. Sobolev, On a new problem of mathematical physics. In Selected Works of SL Sobolev: Volume I: Mathematical Physics, Computational Mathematics, and Cubature Formulas. Boston. MA: Springer US, (2006) 279 ˆa€“ 332.
R. Temam, On the Euler equations of incompressible perfect fluids, Journal of Functional Analysis. 20 (1975) 32-43.